
~-.JW;;... A distributed armtecture ror stanaaras processing

[m,. H. Kiliccote ——

Departmentof Civil and EnvironmenmJEngineering,CarnegieMellon Um”versity,Pittsburgh,PA,USX,,
J. H. Gamttt Jr.
Deparbnentof Civiland EnvironmentalEngineering,CarnegieMelkm University,Pittsburgh,PA, US24
B. Choi
Departmentof Civil and EnvironmentalEngineering,CarnegieMellon Um”versity,Pinsbur~h,PA,USA
K. A. Reed
Buildingand FireResearchLaboratory,NationalInstitute of Standartikand Technology,W@hingwn,DC, USA

ABSTRAC17 An approach to providing computer–aided support for using design standards in design systems is
presented. The standards processing system we developed is composed of five major components that interact
with each other using the Intemeti standards processing servers which evaluate a given design to check whether it
satisfies the requirements of a specific design standard; the standards processor broker which is used by the
designer to identify applicable design standards; the evaluation module which manages the evaluation of a design
with respect to applicable design standards; the data server which acts as a fiont+md between the database of the
design system and the standards processing servers; and standards processing clie:ntswhich display the results of
evaluation to the designer and support access to the standards processor broker and standards processing servers.
By separating the design system from the standards processing activities, multiple standards can be dealt with by.
the design system and-

1 INTRODUCTION

the design system is insulated from changes in standards.

In a major effort to define the nature of next generation
computer aids for building design, the Qrnegie Mel-
lon University Euilding cAAD Consortium (CBCC)
is designing and implementing a prototype software
system for the preliminary design of buildings (Flem-
ming, Coyne and Woodbury 1994).The overall archi-
tecture of SEED, which stands for software ~nviron-
ment to support the Early phases in building Design, is
based on a division of the preliminary design process
into phases, each of which addresses a specific task.
SEED intends to support each phase by an individual
support module based on a shared logic and architec-
ture. The modules envisioned for the first SEED proto-
type stipport the architectural programming, schemat-
ic layout design, and schematic configuration design.

In all three phases, various requirements defined
within design standards must be identified as being ap-
plicable and addressed. Unfortunately, a very large
number of design standards related to buildings are
created and employed, especially in the United States.
Today in the U.S., hundreds of legislative bodies, insti-
tutions, and public agencies are involved in regulating
the design of civil structures and facilities. The design-
er must also ensure that the design conforms to consen-
sus standards, local zoning laws, trade specifications,
company standards and project specific codes.

Using such a large number of potentially applicable
,design standards is a tedious, laborious, and difficult

task (Law and Yabuki 1992). Our objective in doing
the research described h this paper is to design and im-
plement computer-aided support for using design
standards in design systems like SEED.

The first software teds to provide computer–aided
support for using design standards started to appear in
the early 1960’s. Unfortunately each organization or
software vendor started to implement their own inter-
pretations of applicable design standards. The differ-
ent problems that occur with this approach are dis-
cussed in (Garrett and Fenves 1987; Lopez, Elam and
Reed 1988; Law and Yabuki 1992 Gamett and Hakim
19W; !ldjcw(>t~.]9Wj. Briefly these problems are as
follows: only some selected portions of the design
standard are preselected as applicable and represented;
while being represented in a computable model, de-
sign standards are usua~lyinterpreted by a software de-
veloper, who may not be very familiar with the stan-
dard; and design standards are “hard coded” in the de-
sign system. As design standards are dynamic, when-
ever the design standard is changed the design system
must also be changed. As the design system is opti-
mized for a specific design standard, the system cannot
be easily modified to check against another design
standard. The model of the standard is usable only for
evacuation and cannot be manipulated for design pur-
poses.

To overcome these ;problems, the idea of a general-
ized standards processor started to emerge in the early
1980’s (Rehak and Lopez 1981; Lopez and Elam

6th International Conference on Computing in Civil and Building Engineering, July 1995,
Berlin, Germany. 1995.

+——-

,, “.. 1984). Such a generalized standards processor was en-
visioned to be independent of the application and the
design standard. However, the most important advan-
tage would be that the standard writing organization
would be able to develop the computational model of
the standard, thus eliminating any interpretation prob-
lems introduced by an intermediate software develop-
er.

The development of such an independent standards
processor requires a separation between the design
system and the standards processor and a communica-
tion protocol to control the communication between
them. The SICAD (Standards Interface for Comptiter
Aided Design) system was a software prototype devel-
oped to demonstrate the checking of designed compo-
nents as described in application program databases
for confontxmce with design standards (Lopez, Elam
and Reed 1989). SICAD uses mapping functions de-
veloped by the application programmer to link to the
application program database with the standards proc-
essor. However, there was no neutral data model on
which SICAD could base its mappings thus makirig
the mappings one directional and specific to the data
model of the design systems. The SPEX (Standards
Processing Expert) System used a standard-indepen-
dent approach for sizing and proportioning structural
member cross–sections (Garrett and Fenves 1987).
The system reasoned with the model of a design stan-
dard to generate a set of constraints on a set of basic
data items that represent the atrnbutes of a design to be
determined. The model of the standard was used by
SPEX to generate constraints. These constraints were
then given to a numeric optimization system to solve
for an optimal set of basic data item values. SPEX as-
sumed that the design data model and the data model
used to model the standard were identical.

While both SPEX and SICAD were approaches to
providing a separation between design systems and
standards, they had their limitations. Thus, the mom
specific objective of our research is to develop a stan-
dards processor that is independent of the design sys-
tem that uses it and the communication protocol neces-
sary for communication to occur between the design
system and the standards processor.

This paper briefly describes the architectural as-
pects of our approach to providing computer aids for
modeling, accessing, and evaluating standards. Other
aspects (such as functionality) of this approach are de-
scribed in (Kiliccote 1994).

2 OVERALL APPROACH

Our approach in developing such an independent stan-
dards processor is to use a disrnbuted fkamework to
represent and reason with design standards. The stan-
dards processing system is composed of five major

components that interact with each other the evalua-
tion module; the data serveq standards proc~~~iqgcii”
ents; standards processing servers; and the standdr
processor broker. In this approach, shown in Figure 1,
we support multiple standards processing servers that
serve the needs of multiple design systems. The stan-
dards processing servers may even be running on mul-
tiple machines all over the world.

The evah.uuion module, resident within the design
system (e.g., SEED), manages the evaluation of a de-
sign with respect to applicable design standards. The
evaluation module uses the standards broker to identi-
fy applicable standards and then accesses the servers
for those standards and requests evaluations to be per-
formed. This module uses a standards processing cli-
ent for access to the broker and servers.

The &ra server acts as a front+td between the da-
tabase of the design system (e.g., the SEED database)
and the standards processing servers, which use the
data server to quety the database to access the informa-
tion related to the current design.

The standards pro(cessorbroker is used by both the
designers and the organizations that author design
standards. The broker basically maintains the list of all
registered design standards including their addresses
on the Internet and tlheir functionality. The organiza-
tions that author design standards register their design
standards to the standards broker and the designers use
the broker to determine the design standards that are
applicable to the given design problem.

A standardsproceming client displays the results of
evaluation to the designer and supports access to the
standards processor ‘broker and standards processing
servers over the Internet.

A standards processing server evaluates a given de-
sign to check whether it satisfies the requirements of a
specific design standard. Each standards processor
may serve multiple standards processing clients.

3 PROTOTYPE

We designed and implemented a prototype of this dis-
rnbuted standards processor architecture using the In-

Internet

. E& - :m-y~-l
w Iv

4 astandards

(SEED) processing

Designer H evaluation scncr #l

mcdule4
4 / \ I

...

slarrdards
b 1 J-El

ssandards

p-w!
prwcssrng
sewer *

I
~1

Figure1.Overallapproachfordesignstandardsupport

,.
L.

. . “ design by higgering the CLIPS inference engine to
%?-” ‘mess the convert~ code” Fin~lY* the s~~ds

~..-..;... . . . ‘processorserver prepares a document that contains the
&ult of the evaluation (currently only in English, i.e.,
without computable information) and adds hyper–
links to related documents.

In the last major step, the results are displayed to the
designer, which is accomplished by the following
tie steps. The server returns the document to the
standards processing client along with a unique identi-
fication number. The standards processing client dis-
plays the documents to the designer. Finally, the de-
signer may request the evaluation module to perform
subsequent queries using the unique identification
number.

4 EXAMPLE

In this section, we provide an example of an evaluation
process in the SEED environment using the prototype
standards processing environment described in Sec-
tion 3. Although we use the SEED system as our test-
bed, the described approach is applicable to other de-
sign systems as well. For a more complete description
of the design process perfonmd in the SEED environ-
ment, see (Flemming, Coyne and Woodbury 1993).
The SEED-Layout (SL) module is run by the designer
and an example design is generated as shown in
Figure 3.

In Figure 3, the Design Window of the SEED-Lay-
out Module is shown. The Design Window enables the
designer to construct, view and manipulate an evolv-
ing schematic layout design for a building through a
combination of manual and automatic generation op-
erations. It displays in the center part of the window a
possible layout solution for the design problem. The
other interface components in this figure are not rele-
vant to our example.

The design shown is obtained by generating the
three subcomponents of a One Company Headqrmrters
Fire Station: an administration wing an apparatus
room; and a dormitory wing (shown left to right in
Figure 3). Currently, fire stations are the primary

building type underccmsideration for the development
of the SEED system,

After the design is generated, the designer may
choose to evaluate the design by p~ssing the “Evalu-
ate” button in the Evaluation Window of the SEED-
Layout Module (not shown).

In this window, using the button labeled “standards
processor:’ the designer can choose the standards
processor server that should be used to evaluate the de-
sign. This corresponds to the first step of the evalua-
tion process described the Section 3. For now, the only
standad available to choose is the Design Guide of the
Department of the Army Office of the Chief Engineer
DO-11 10-3-145 (DAOCE 1986). The broker will
eventually help to find and select among the available
applicable standards. The button labeled “Evaluate”
initiates an evaluation process bypassing the address
of the SEED data server to the standards processor
(Step 2). In this step,, the standards processor mns a
separate CLIPS sessicmand converts the SDL descrip-
tion of the Fire Staticm standard into the CLIPS pro-
gramming language. ‘Thestandards processing server
accesses the design data, converts it to the CLIPS pro-
gramming language and evaluates the design by trig-
gering the CLIPS inference engine to process the con-
verted data (Step 3). Then, the result of the evaluation
appears in the standards processing client as shown in
Figure 4 (Step 4).

The standards processing client that we ckrrently
use is a world-wide web client (such as Mosaic). We
recognize that although using a world-wide web client
to display the results of the evaluation process pro-
vides adequate suppoIrtfor a human to view the results,

Figure 3.Designgenerattiby SEED-Layout Figure 4.Theresult of the evaluation

-. =. ->,—-
. . .- design by triggering the””CLIPSinference engine to

. process ~e conver&l code. Finally, the st&dards
:., processor semerprepares a document that contains the

result of the evaluation (currently only in English, i.e.,
without computable information) and adds hyper-
links to related documents.

In the last major step, the results are displayed to the
designer, which is accomplished by the following
three steps. The server returns the document to the
standds processing client along with a unique identi-
fication number. The standards processing client dis-
plays the documents to the designer. Finally, the de-
signer may request the evaluation module to perform
subsequent queries using the unique identification
number.

4 EXAMPLE

In this section, we provide an example of an evaluation
process in the SEED environment using the prototype
standards processing environment described in Sec-
tion 3. Although we use the SEED system as our test-
bed, the described approach is applicable to other de-
sign systems as well. For a more complete description
of the design process performed in the SEED environ-
ment, see (Flemming, Coyne and Woodbury 1993).
The SEED-Layout (SL) module is run by the designer
and an example design is generated as shown in
Figure 3.

In Figure 3, the Design Window of the SEED-Lay-
out Module is shown. The Design Window enables the
designer to construct, view and manipulate an evolv-
ing schematic layout design for a building through a
combination of manual and automatic generation op-
erations. It displays in the center part of the window a
possible layout solution for the design problem. The
other interface components in this figure are not rele-
vant to our example.

The design shown is obtained by generating the
three subcomponents of a One Company Headqruirters
Fire Station: an administration wing an apparatus
room; and a dormitory wing (shown left to right in
Figure 3). Currently, fire stations are the primary

building type under consideration for the development
of the SEED system, ‘.,. ,,

After the design is generated, the designer may
choose to evaluate the design by pressing the “Evalu-
ate” button in the Evaluation Window of the SEED-
Layout Module (not shown).

In this window, using the button labeled “standards
processor; the designer can choose the standards
processor server that should be used to evaluate the de-
sign. This corresponds to the first step of the evalua-
tion process described the Section 3. For now, the only
standard available to choose is the Design Guide of the
Department of the Army Office of the Chief Engineer
DG-111O-3-145 (DAOCE 1986). The broker will
eventually help to find and select among the available
applicable standards. The button labeled “Evaluate”
initiates an evaluation process bypassing the address
of the SEED data server to the standards processor
(Step 2). In this step, the standards processor runs a
separate CLIPS session and converts the SDL descrip-
tion of the Fire Station standard into the CLIPS pro-
gramming language. The standards processing server
accesses the design data, converts it to the CLIPS pro-
gramming language and evaluates the design by trig-
gering the CLIPS inference engine to process the con-
verted data (Step 3). Then, the result of the evaluation
appears in the standards processing client as shown in
Figure 4 (Step 4).

The standards processing client that we ckrrently
use is a world-wide ‘webclient (such as Mosaic). We
recognize that although using a world–wide web client
to display the results of the evaluation process pro-
vides adequate support for a human to view the results,

Figure 3. Design generated by SEED-Layout Figure 4.Theresult of the evaluation

...—.. —

.“ “”{~-~!,~extracting meaningful information from the textual
,“ “’: representation is very difficult and other means to rep-

nxen~ view and query the results must be investigated
in the future.

i

5 ADVANTAGES AND DISADVANTAGES

The distributed architecture described provides a well
defined model and protocol for the communication be-
tween two applications (in this case, the SEED design
system and the Fim Station standards processor serv-
er). The main advantage of this approach is that partic-
ipating applications may be in physically remote loca-
tions and the type and the operating system of the ma-
chine on which they run maybe different. Additional-
ly, standards processors that use such a distributed ar-
chitecture have three major advantages.

The f~st advantage is that, multiple design stan-
dards are easily accessed by the design system. Be-
cause a standards processor in the distributed architec-
ture is an external (even physically remote) part of the
design system, new standards processors that conform
to the established communication protocol are able to
be easily added. The design systems are able to access
these new standards processors using the established
communication protocol.

The second advantage is that, each organization is
able to have its own server, which means that mainte-
nance and legal responsibility for the design standards
are distributed to the organizations that author them.

The third advantage is that, by using such a distrib-
uted approach, reference to a design standard of anoth-
er organization can be made automatic and hidden
from the user. Referencing a standard in this manner
also ensures that the standards being referenced are al-
ways the most recent editions of the standards.

The distributed standards processing framework
that we implemented was designed as a prototype to
show the feasibility of this approach. From this proto-
type, we were able to identify some major problems re-
lated to the implementation of this distributed stan-
dards processing framework. The problems that we
identified are: inadequacy of the H’ITP servers; state-
Iessness of the H’ITP protocol; and inadequacy of
Quanta. Each of these problems is explained in the fol-
lowing three paragraphs.

Inadequacy of the H7TP servers. The most impor-
tant problem that we encountered is the communicat-
ion overhead of the HITP servers. We measured that
on the average there is a multiple second time delay be-
tween each evaluation request and response. This
delay is unacceptable in a generative system (such as
SEED) that may generate tens or hundreds of altern-
ativedesigns.

Statelessness of the H2TP protocol. Another prob-
lem of the current design is the statelessness of the
HTTP protocol. The Router that we implemented is

not a perfect solution. The basic problem is that there is
no good answer to the question of how long the server
must keep the separate Quanta images in memory.
Currently there is a five minute access restriction. If
the server is inactive for more than five minutes, then
the image of Quanta is deleted from memory. This is
unacceptable in a standards processor because design
decisions may require hours or even days. The man-
agement problems related to using the Router are cur-
rently unanswered.

Inadequacy of Quanta. The current version of
Quanta is not designed for use in a distributed system.
It was designed as a compiler assuming classical inter-
action approaches, which means the current version of
Quanta assumes that allmlevant information is written
to a file and supplied when Quanta is run. Because of
this assumption, the information access from the data
server by the Router is ad-hoc. Currently the Router
requests all the information horn the data server. This
has at least two disadvantages: inefilciency and com-
plexity. These two disadvantages are described in the
next two paragraphs.

lnefllciency. For cmmplex design environments,
only a small portion of the design data is relevant for
the evaluation of the clesign for a design standard. For
example, the structural load information is not neces-
sary for the evaluaticm of the plumbing system in a
building. Thus, not passing the loading information
will significantly decrease the evaluation time of the
plumbing system.

Complexity. If all design information is passed to the
standards processors, then the computable model of
design standards would require more complex build-
ing models (i.e., at least as complex as the building
models used in the design environments). For examp-
le, the building model required to model the 1990
NFiPA Standard for Dry Chemical Extinguishing Sys-
tems (NFiPA 1990) is very simple and does not require
any information about, for example, foundations and
retaining walls. Thus lpassingall the information about
foundations and retaining walls for the evaluation of
the fire extinguishing systems would require that the
building model used in the computable model of the
NFiPA Standard contain some constructs to represent
foundations and retaining walls or remove such infor-
mation.

6 FUTURE DIRKI’IONS f

To overcome the problems described in Section 5, we
are working on a new distributed approach to repre-
senting and processing standards which we call the
Standards Processing Framework (SPF). We are also
working on a modified version of the evaluation mod-
ule that provides better communication between de-
sign systems and the SPF and better control over SPF
functionality. Both of these efforts are described in
more detail in the following two subsections.

6.1 Standard processing framework

l%c SPF is a distributed multi-module Ihmework for
representing and processing standards. The modules
in the SPF are called SPF Agents. The overall architec-
ture proposed for the SPF is shown in Figure 5.

As shown in Figure 5, The SPF will support multi-
ple communication protocols. In this architecture, the
SPF agents maybe located in the same process, in dif-
ferent processes (communicating using interprocess
mnmunication), on different machines in the same or-
ganization (communicating using a local netwo*) or
on different machines in different organizations dis-
tributed all over the world (communicating using the
Internet).

In the SPF, unIike most other distributed systems,
the criterion to be an SPF agent will be functional. In
most other other systems the criterion to be an agent is
behavioral (e.g., Terk 1992; Genesereth, Singh and
Syed 1994). In the SPF, an entity will be an agent if and
only if it can perform a specified set of functions.’ In
SPF, agents will not be required to speak the same lan-
guage or use the same communication scheme. They
will not be required to understand preset semantics.
Even criteria such as veracity, autonomy, and commitm-
ent will not be required, which means SPF agents
may be incorrect at times (veracity), constrain another
agent to perform a se~ice even though the other agent
has not advertised its willingness to accept such a re-
quest (autonomy), or prefer not to perform a service
even if it has advertised its willingness to perform the
service and another agent has asked it to do so (com-
mitment).

The SPF will not impose an overall hierarchy or or-
ganization. The only criterion to be an SPF agent will
be the provision of functionality that each agent must
support. This functionality includes a bookkeeping fa-
cility (an agent may be questioned about the informa-
tion that it supplied to or requested from other agents),
a brokerage facility (an agent maybe questioned about
the addresses of other agents that it knows), and a con-

k
N M SPF Agent 6-D

SPF Agent w H SPF Agent

w SPF Agent d-D

Interprocess
Communication

- SPF Agent

SPF Agent SPF Agent H

w
A

Figure 5. The Overall Architecture of the SPF

text facility (an agent may be questioned about its as-
sumptions, beliefs, language that it can speak). An
agent may return incorrect or incomplete infotrrtation
&ause iis assumptions or beliefs maybe vtmingor a
communication problem may be causing a misunder-
standing. The architecture by which we propose to
provide this functionality is shown in Figure 6.

As shown in Figure 6, each SPF agent has thnx
components: a knowledge server, a knowledge
acqzu”rerand a processor. The processor of the SPF
agent is encapsulated by a knowledge acquirer and
knowledge server. The knowledge server is responsi-
ble for supplying information to other agents @atcon-
tact the agent. The knowledge acquirer is responsible
for contacting other agents and requesting information
required to perform its functions.

The knowledge server has two components: a book-
keeper and a request handler. The bookkeeper keeps
track of all the information that is served to other
agents. If, for any reason, apiece of information be-
comes invalid, the client that used that information is
contacted and warned about the change. The request
handler is responsible for accepting requests and send-
ing back the results of the requests.

The knowledge acquirer has four components: a
broker, a bookkeeper,, an agent discoverer, and a re-
quest handler. The broker is similar to an address
book. It maintains the list of all known agents and their
functionality. This functionality recorded at the broker
is the context of other agents (see below). The book-
keeper is responsible for maintaining the list of all the
information that was ilCCeSSCdfrom other agents. The

E3:,I:II==3’J
b

--- 4, * -.
--- * 9 ---

----. * t ‘. *

Broker 1 Bookkeep&r I Agent l)iscovemrl ~uest Handler I

Em]
Figure 6. Anatomy of an SPFAgent

—

. . ..;,-:. : : agent discoverers responsible for finding the address-
., , .es of the agents that may fulfill an information need.,.”

The request handler is responsible forccmtacting other
agents and requesting information.

The processor has two components: a core and a
d context. The core is encapsulated by the context which

contains the meta information about the agent. The
meta information includes the capability, assump-
tions, information need, and expected response time of
the agent. The com is where actual computation is
done. From outside the agent, it is pemeived as a black
box. We identified that the SPF should be able to sup-
port different representation and reasoning methodol-
ogies because the modeling of a provision maybe very
difficult in one representation but may be easier in
another. Thus preselecting a representation and rea-
soning methodology may severely hinder the model-
ing of other provisions.

62 Evah.@ion module

Based on the SPF architecture described in the pre-
vious section, we are currently developing a new ap-
proach to support the usage of design standards during
a design process. This new architecture is illustrated in
Figure 7. In the previous approach (see Figure 1), the
designer interacted with the design system, evaluation
module and standards processing client. the evaluation
module only provided support for post design check-
ing. The role of the evaluation module in the new ap-
proach has been expanded to encapsulate the function-
ality of the standard processing client and the data
server as well as other design standard usage function-
ality. The parts of the standard processing client that
facilitated the communication among the designer and
the standards processing agents, such as the standards
processor broker and the standards processing servers,
will be collected in a new component called the stan-
dards processing facilitator. This component will be
responsible for correctly routing the communication
between the evaluation module and the other standards
processing agents.

To accomplish this new role for the evaluation mod-
ule, the translation facilities that will be present in the

evaluation module. am being more formally defined.
Again, we are using the SEED system as our test bed
for this research. The data models in the SEED design
system are built around a meta-level agent commu-
nication language called the Object Modeling Lan-
guage (OML) (Snyder 1994). OML implements sche-
ma mapping through a shared neutral object model and
language bindings. The neutral object model only ex-
ists conceptually for the applications which partially
share its schema. The language bindings automatically
generate code for handling low level data exchanges
and state change notifications. We intend to utilize
OML to map the design model in SEED to the stan-
dards model usedin the standards processoragents and
vice versa. This mapping is shown in I@re 8.

The design object model in the figure represents the
neutral object model used by the SEED system”,mdthe
standards object model represents the neutral object
model used by the standards processing servers. The
evaluation module stems the mapping information of
the two data models and the constraints expres@ over
them.

In this new architecture, the evaluation pr@ess has
similar steps. First the designer identifies applicable
standards processing servers and contacts them
through the evaluation module. The standards proc-
essing server accesses the design data and evaluates
the design and the results are displayed to the designer.

We believe this approach will preserve the advan-
tages of the distributed architecture discussed in Sec-
tion 4 and also provide additional functionality such as
better explanation facilities to the designer, bookkeep-
ing facilities, and support for more active uses of de-
sign standards in the generation of designs. One imme-
diate advantage of this new architecture is that it al-
lows the incorporation of a wide variety of representa-
tional techniques into the same standard model, thus
providing a broader, more powerful set of representa-
tions to use in modeling a design standard. Such a
framework can also accommodate various t’es of
knowledge bases and, provide access to multiple de-
sign standards. Guides and heuristics supplied by de-
signers, companies o]rstandard organizations may be
agents in this distributed framework. These agents
may be very complex and be running on multiple ma-

SEED
communication

channel I
Design

a

srarsdard
M (SEED) processor

System DB broker

communication
channel I

d-n

sl.mdard

I :rou;s;,g
(SEED) asnfiarrl

Design evaluation processor
module fseilit.tnr r“

1- tip==f I

V B
● *.

~lcnrl.........

1~
Figure7.Proposedapproachforcomputer-aideddesign

standardSUPPCMt

d
SEED
design
system

SEED
data model

rl-design
object
model

13standards
model
(OML)

evaluation
module

Eldata
model
(OML)

zstandards
object
mcdel

standards
model

I standards
processing

server

Figure 8. Object models and evaluation module

...<—— ---
.

‘.: ‘.~~:~’chines all over the world or be very simple and be run-.,

ning in the same address space on a single machine.
Also because this architecture supports “true” agents,
the problems that we identified in Section 5 are also
solved. l%ese agents will be able to retain their states
between different evaluation processes and contact
other agents to request information and services re-
quired to perform design evaluation.

7 SUMMARY

We presented two different distributed a.mhitectums to
process design standards. In these architectures, multi-
ple standards processing servers are supported inde-
pendently of the design systems that use them. These
standards processing processing sexvers may even be
running on multiple machines all over the world.

The distributed architectures that we presented pro-
vide convenient approaches to create, maintain, access
and evaluate design standards. The second proposed
architecture is much more robust version of the first.
By separating the design system from the standards
processing activities, as supported by these architec-
tures, the following benefits occur multiple standards
can be easily accessed and used in a variety of ways by
the design system, the computable models of the de-
sign standards can be maintained by the organizations
that create them; and the design system is insulated
from changes in standards.

8 REFERENCES

Bemers-Lee, T. J, R. Cailliau and J. F. Groff. 1992.
The World-Wide Web. Computer Networks and
ISDN Systems. 25:454459.

DAOCE (Department of the Army Office of the Chief
Engineers). 1986. Fire Station Design Guide No:
1110-3-145, Washington, D.C.

Flemming, U., R. Coyne, R. Woodbury. 1993. SEED:
A Software Environment to Support the Early
Phases in Building Design. In Proceedings of the
Fourth International Conference on Computer
AidedDesign in Architecture and Civil Engineering.
Barcelona, Spain, 111–122.

Garret4 J. H., Jr., and M. M. HaMm. 1992. Object-ori-
ented model of engineering design standards. Jour-
nal of Cornpuring in Civil Engineering. 6(3):
323-347.

Garrett, J. H., Jr., and S. J. Fenves. 1987. A Knowl-
edge-based standards processor for structural com-
ponent design. Engineering with Computers. 2(4):
219-238.

Johnson Space Center Software Technology Branch.
1993. CLIPS Reference Manual. Houston, TX.

Kiliccote H. 1994. The context+riented model: a hy-
brid approach to modeling and processing design

standards. Master’s thesis, Department of Civil En-
gineering, Carnegie Mellon University, Pitt~b@i,.
PA.

Kiliccote, H., J. H. Garret~ Jr., T. Chrnielenski, and K.
Reed. 1994. The Context-Oriented Model: .An Im-
proved Modeling Approach for Representing and
Processing Design Standards. In Proceedings of the
First Congress on Computing in Civil Engineering.
ASCE, Washington, D. C., 145-152. ‘T

Law, K. H., and N. Yabuld. 1992. An integratedsystem
for design standards processing. Proceedings of the
1992 Computer and Building Stan.alzrdsWo@shop.
University of Montreal. Montreal, Canada, May
12-15,1992.

Lopez, L. A., S. Elarn and K. Reed. 1989. Software
concept for checking engineering designs for con-
formance with codes and standards. Engineering
with Computers. 5x53-78.

Lopez, L. A., and S. L. Elam. 1984. SICAD: A Proto-
type Knowledge Based System for Conformance
Checking andDesign. Technical Report. Civil Engi-
neering Studies, CESL, Research Series 9. ~ep~-
ment of Civil Engineering. University of Ill#nois at
Urbana-Champaign~. Urbana-Champaign, IL.

NFiPA 1990. National Fire Protection Association.
Dry Chemical Extinguishing Systems. Batterymarch
Park Quincy, MA :!

JRehak, D. R., and L. A. Lopez. 1981. Comput”rAided
Engineering - Problem and Prospects. Technical
Report of Research, Civil Engineering &udies,
CESL, Research Series 9. Department of Civil Engi-
neering, University of Illinois, Urbana, IL. .

Snyder, J., U. Flemming, and R. Stouffs. 1994. Sprout
Object Specification Language. Unpublished Inter-
nal Document, Engineering Design Research Cen-
ter, Cqnegie Mellon University, Pittsburgh, PA.

Terk, M.’~992.A problem-centered approach to creat-
ing design environments for facility development.
Ph.D. thesis, Department of Civil Engineeri~g, Car-
negie Mellon University, Pittsburgh, PA. !

‘1

. . .

● ✍

✎

, ‘ll.vomodules (the standards processing client and the
data server) support the communication between the
standards processing servers and the design system.

d The evaluation module, resident within the design sys-
tem, manages the evaluation of a design with respect to
applicable design standards. The evaluation module,
using the standards processing client, accesses the

standards broker to identify applicable standards and
then accesses the servers for those standards and re-
quests evaluations to be performed. The standards
processing servers access the design information using
the data server and evaluate the design. The results of
the evaluation are displayed to the designer using the
standards processing client.

